Chloride Is essential for capacitation and for the capacitation-associated increase in tyrosine phosphorylation.

نویسندگان

  • Eva V Wertheimer
  • Ana M Salicioni
  • Weimin Liu
  • Claudia L Trevino
  • Julio Chavez
  • Enrique O Hernández-González
  • Alberto Darszon
  • Pablo E Visconti
چکیده

After epididymal maturation, sperm capacitation, which encompasses a complex series of molecular events, endows the sperm with the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of the oviductal fluid. It is well established that capacitation requires Na(+), HCO(3)(-), Ca(2+), and a cholesterol acceptor; however, little is known about the function of Cl(-) during this important process. To determine whether Cl(-), in addition to maintaining osmolarity, actively participates in signaling pathways that regulate capacitation, Cl(-) was replaced by either methanesulfonate or gluconate two nonpermeable anions. The absence of Cl(-) did not affect sperm viability, but capacitation-associated processes such as the increase in tyrosine phosphorylation, the increase in cAMP levels, hyperactivation, the zona pellucidae-induced acrosome reaction, and most importantly, fertilization were abolished or significantly reduced. Interestingly, the addition of cyclic AMP agonists to sperm incubated in Cl(-)-free medium rescued the increase in tyrosine phosphorylation and hyperactivation suggesting that Cl(-) acts upstream of the cAMP/protein kinase A signaling pathway. To investigate Cl(-) transport, sperm incubated in complete capacitation medium were exposed to a battery of anion transport inhibitors. Among them, bumetanide and furosemide, two blockers of Na(+)/K(+)/Cl(-) cotransporters (NKCC), inhibited all capacitation-associated events, suggesting that these transporters may mediate Cl(-) movements in sperm. Consistent with these results, Western blots using anti-NKCC1 antibodies showed the presence of this cotransporter in mature sperm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm.

Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm hav...

متن کامل

Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation.

Mammalian sperm are not able to fertilize immediately upon ejaculation; they become fertilization-competent after undergoing changes in the female reproductive tract collectively termed capacitation. Although it has been established that capacitation is associated with an increase in tyrosine phosphorylation, little is known about the role of this event in sperm function. In this work we used a...

متن کامل

Calmodulin antagonists differentially affect capacitation-associated protein tyrosine phosphorylation of mouse sperm components.

Sperm capacitation in vitro is thought to be correlated with the increased protein tyrosine phosphorylation of a subset of sperm components. Our group recently used a pharmacological approach to demonstrate that calmodulin (CaM), a 17 kDa calcium sensor protein, has a role in sperm capacitation. In the present study, we have used several CaM antagonists in an attempt to characterize further the...

متن کامل

Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation.

The process of sperm capacitation is correlated with activation of a signal transduction pathway leading to protein tyrosine phosphorylation. Whereas phosphotyrosine expression is an essential prerequisite for fertilization, the proteins that are phosphorylated during capacitation have not yet been identified. In the present study, we observed that a major target of this signaling pathway is th...

متن کامل

Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa.

Fertilization of the mammalian oocyte depends on the ability of spermatozoa to undergo a process known as capacitation as they ascend the female reproductive tract. A fundamental feature of this process is a marked increase in tyrosine phosphorylation by an unusual protein kinase A (PKA)-mediated pathway. To date, the identity of the intermediate PKA-activated tyrosine kinase driving capacitati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 51  شماره 

صفحات  -

تاریخ انتشار 2008